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Abstract. A model-free, case-based learning and control algorithm called
S-learning is described as implemented in a simulation of a light-seeking
mobile robot. S-learning demonstrated learning of robotic and environ-
mental structure sufficient to allow it to achieve its goal (reaching a light
source). No modeling information about the task or calibration informa-
tion about the robot’s actuators and sensors were used in S-learning’s
planning. The ability of S-learning to make movement plans was com-
pletely dependent on experience it gained as it explored. Initially it had
no experience and was forced to wander randomly. With increasing ex-
posure to the task, S-learning achieved its goal with more nearly optimal
paths. The fact that this approach is model-free and case-based implies
that it may be applied to many other systems, perhaps even to systems
of much greater complexity.

1 Introduction

S-learning is a general learning and control algorithm modeled on the human
neuro-motor system [2, 8, 9]. It is model-free in the sense that it makes no as-
sumptions about the structure or nature of the system being controlled or its
environment. S-learning accomplishes this using case-based reasoning. It uses
previous experience to help it select actions. This paper describes the implemen-
tation of S-Learning in computer code and the application of S-learning to a
simulated mobile robot.

1.1 Relation to Previous Work

Most approaches to robot control assume the existence of an explicit system
model. Even the majority of learning algorithms take the form of a search in
parameter space, with the underlying structure determined beforehand. Other
methods make a less constraining assumption: that the vectors of state infor-
mation occupy a metric space. This allows the use of distance metrics, such
as the L2 norm, to interpret its state history. These include finite state ma-
chines [11], variants of differential dynamic programming [7, 12], the Parti-game
algorithm [6], and probabilistic roadmaps [3]. But even this seemingly benign as-
sumption implies a good deal about the system being modeled. It is violated by



any sufficiently non-smooth system, such as one containing hard-nonlinearities
or producing categorical state information.

There are still a number of algorithms that are similar to S-learning in
that they make no assumptions about the system being learned and controlled.
These include Q-learning [13], the Dyna architecture [10], Associative Mem-
ory [4], and neural-network-based techniques including Brain-Based Devices [5]
and CMAC [1]. These approaches, together with S-learning, can be categorized
as reinforcement learning (RL) algorithms, or solutions to RL problems. How-
ever, these all assume a static reward function, where S-learning does not.

1.2 Dynamic Reinforcement Learning Problem Statement

To be more precise, S-learning addresses a general class of reinforcement learning
(RL) problem, referred to hereafter as the dynamic RL problem: how to maxi-
mize reward in an unmodeled environment with time-varying goals. More specif-
ically, given discrete-valued action (input) and state (output) vectors, a ∈ A and
s ∈ S, and an unknown discrete-time function f , such that

st = f(ai≤t, si<t, t), (1)

(where the notation ai≤t denotes the set of all ai such that i ≤ t) and a scalar
reward, r, and known reward function, g, such that

rt = g(si≤t, t), (2)

maximize the total reward over time:

V =

∞
∑

i=0

ri (3)

Equation 3 shows an infinite-horizon formulation, but finite- and receding-
horizon variations of the dynamic RL problem are similarly structured.

The dynamic RL formulation is relevant to a large class of problems. It is
applicable in instances where 1) the model is unavailable and 2) the reward
function varies with time. Models may be unavailable for a number of reasons.
Systems may be too complex to model accurately with the resources available.
Also, systems may have characteristics that vary with age, such as joint fric-
tion or tire pressure, or may even have minor sensor and actuator failures. Time
varying reward functions are introduced whenever the system’s goals are mod-
ified, as in response to an operator command. Despite the importance of the
dynamic RL problem, no other published solutions exist. The nature of the
dynamic RL problem—that the only information available is the robot’s action-
state history—suits it well to a case-based reasoning approach.



2 Method

S-learning operates by recording sequences of state-action pairs. The resulting
libraries contain a reduced version of the system’s history, a system memory.
The memory can then be used to make predictions and guide the selection of the
system’s actions. When the system encounters a previously-experienced state, it
retrieves sequences beginning with that state. The system can then re-execute
the actions of recalled sequences that terminate in a reward state, as in a case-
based approach.

2.1 S-learning algorithm

S-learning handles state-action (s-a) pairs, σ. An ordered sequence of state-
action pairs is called a sequence, φ, and an unordered collection of φ is a library,
κ. Both φ and κ may have any length of one or more, given by nσ (number of
state-action pairs) and nφ (number of sequences), respectively.

An S-learning implementation can be broken into three main function blocks:
the Agent, the Environment, and the Sequence Library. (Figure 1.)

Agent Environment

Sequence Library

Fig. 1. Block diagram of S-learning. The Environment represents the system dynamics,
f , and the Agent contains the reward function, g. The Sequence Library is created from
the time history of s-a pairs.

Environment The Environment is the embodiment of the system dynamics, f
(Equation 1). It receives action commands from the Agent and reports its state
to Sequence Library and back to the Agent. In practice the Environment may be
a continuous-time system, as long as it includes a means to execute discrete-time
commands, a, and to report discrete-time sensor information, s.

The formulation of the dynamic RL problem places no constraints on the
Environment. It may contain its own internal control system, stochastic ele-
ments, and learning capabilities. The Environment may do a large amount of



pre-processing on its sensor data and return highly-interpreted information. Al-
ternatively, it may return nearly raw sensor data, binned and discretized in time.
It may be physical or simulated, and there are no explicit limits to the complexity
it can have.

Agent The Agent contains the reward function, g, and uses it to evaluate the
plan candidates it receives from the Sequence Library. It executes the plans it
selects by passing the corresponding actions to the Environment. The procedure
the Agent follows during its operation is outlined below:

1. Define a target, τ , consisting of the most recent σ.

2. Query the Sequence Library for sequences that begin with τ , φ(τ). The set
of these form κ(τ), a collection of candidate plans.

3. Select a plan to execute from κ(τ):

(a) Select the candidate plans that maximize the expected reward, r, from
the states that follow τ in each φ(τ).

(b) If there are more than one of these, select the shortest among them, that
is, minimize nσ.

(c) If there is still more than one candidate, randomly select from among

the remaining candidate plans such that a single plan, φ̂, is selected.

4. Execute the actions, a, associated with each element of φ̂.

5. Return to step 1.

The Agent also passes copies of the actions it executes, a, to the Sequence
Library, so that it can assemble each a-s pair into a σ.

Sequence Library The Sequence Library is at the heart of S-learning. It allows
S-learning to learn from its experience, use new learning as it is gained, generalize
that learning to unfamiliar situations, make predictions, and attain goals. It has
two primary functions: to pass candidate plans to the Agent and to record state
space trajectories as they are observed. Candidate plans, φ(τ) are selected on
the basis of whether they begin with the target subsequence, τ , passed in by the
Agent. The set of φ(τ), κ(τ), is returned to the Agent. The process for recording
newly observed states in the library is described below.

Due to the fact that S-learning is an experience-based learning algorithm,
there is no distinction between memory and learning. Both are accomplished by
the storage of sequences. As the Agent passes in actions, a, and the Environ-
ment passes in output states, s, the Sequence Library assembles them into a-s
pairs, σ. A working memory of the most recently observed states is maintained.
Sequences, φ, of length nσ are stored in the library, κ. For φj that begins with
σi, φj+1 will begin with σi+1, that is, the subsequent sequences overlap by nσ−1
states. Through this accrual process, κ becomes the repository of the system’s
experience.



2.2 Robot Simulation

The S-learning algorithm was coded in Java and demonstrated with a simple
simulated system. The simulation consisted of a mobile wheeled robot with two
light sensors and eight contact sensors. (Figure 2) The robot occupied a 25 × 25
cell grid world. The robot could be positioned in the center of any one of the 625
cells in any one of the eight directions of the compass rose (up, down, right, left,
and the directions offset 45 degrees from them). Contact sensors were located
on the front, rear, sides, and corners of the robot. These registered whether
the robot was in the border rows of the grid and in which direction were the
contacted wall(s). The steering angle of the robot was also fed back with the
sensory data.

Fig. 2. Representation of the simulated robot. The steering angle of the front wheels,
wall contact in any of 8 directions, and the sensed intensity at the two light sensors
were all included in the state vector information.

A light source occupied another one of the grid cells and provided input to
the light sensors. The two light sensors were each oriented 45 degrees from the
robot’s heading, one on the right and one on the left. The intensity of the light
reaching the robot was the inverse of the square of the Euclidean distance from
the robot to the light source and was determined by the following equation:

I =
1

(xs − xr)2 + (ys − yr)2 + ǫ
(4)

where xr, yr, xs, and ys are the x− and y−coordinates of the robot and light
source, respectively. ǫ = 10−7 was added to denominator to maintain numerical
stability. The off-angle sensitivity, Ω, for each sensor was determined by the
square of the cosine of the off-angle. This yielded a sensitivity of one in the
direction of the sensor and a sensitivity of zero at an off-angle of ± 90 degrees.



Sensitivity at greater angles was also zero. The sensed intensity for each sensor,
Î was the product of the intensity and the off-angle sensitivity:

Î = IΩ (5)

The steering angle could have one of three values—straight ahead or 45 de-
grees to the right or left—and the robot could either drive forward or reverse.
Steering and locomotion commands were incremental. A ‘steer right’ command
increased the steering angle by 45 degrees unless it was already at its maximum
value. ‘Steer left’ worked similarly. Movements forward and backward were made
in one-cell increments. When the robot’s heading was diagonal to the grid array,
movements were made to the nearest diagonal cell. Motion was executed by first
rotating the robot in place by the steering angle before moving either forward
or backward. When it attempted to drive into a wall head-on or into a corner,
the robot was not permitted to do so and it remained where it was. When it
attempted to drive into a wall at a 45 degree angle, it instead moved to the next
cell along the wall and maintained its heading. The robot was also not permitted
to drive backward through the light source. Simultaneous ‘steer right’ and ‘steer
left’ commands resulted in no change to the steering angle, and simultaneous
‘forward’ and ‘reverse’ commands resulted in no locomotion.

Action-state pair vector, σ The σ vector at each timestep was composed
of binary elements representing the command issued and the sensory state after
executing the command. The composition of σ is detailed in Table 1. The light
sensor data was a binned Î, with the bin number given by the following:

b = 50 − ceil

(

1

(Î + ǫ)0.5

)

(6)

The actual bin number, b̂, was limited to the bins available:

b̂ =







1 if b < 1
50 if b > 50
b otherwise

(7)

b̂ = 1 corresponded to very little to no light reaching the sensor, and b̂ = 50
corresponded to very intense light exposure. Both light sensors simultaneously
achieved b̂ = 50 only when the robot drove forward into the light source. Vector
elements corresponding to active sensor or command elements were equal to one.
All others were zero.

Reward The goal of the system emerged from the nature of the reward. A
reward vector, ρ, was created with the same length as σ, such that the total
reward, r, was given by the following:

r =
∏

i

ρi for all i where σi = 1 (8)



Table 1. Composition of σ for the simulated robot.

Sensory modality or Number of
command type elements

Command: steering 2

movement 2

Sensors: contact 8

steering angle 3

light (right) 50

light (left) 50

Total: 115

In this formulation, ρ served as a set of multiplicative weights for σ. Sensory
states were rewarded or penalized by assigning higher or lower values of ρ. The
ρ used in the simulation was constructed in the following way:

– ρ values for steering angle positions were all set to 1, so as to neither reward
nor penalize them.

– ρ values for contact sensors were set to 0.7 to penalize contact with the
borders of the grid.

– For the light sensors, the 50 reward vector elements that corresponded to
the gradations in intensity were set according to the relation ρi = i/50 . The
most intensely sensed light produced a ρ of 1, resulting in no penalty, while
the weakest sensed light produced a ρ of 0.02, a strong penalty.

Sequence library creation At each timestep, the action that was executed
and the state that resulted from that action were combined into a state-action
pair, σ. The sequence of nmax

σ most recently observed sequences was maintained,
where nmax

σ was the maximum sequence length, a parameter manually set in
software. As described above, the longest sequence not in the library already
(up to the maximum sequence length) was added to the Sequence Library. Due
to the simplicity of the system, all the information necessary to make reasonably
accurate predictions about the system was available at each timestep. In this case
a maximum sequence length of nmax

σ = 2 was sufficient. More complex systems
would benefit from a greater nmax

σ , as it would be able to compensate somewhat
for partial or noisy state information.

As sequences were added to the library, they were assigned an initial strength
value, 106. At each timestep, the strength was decreased by 1. The strength of
each sequence was multiplied by 10 after each repeat observation. If strength
ever decayed to 0, the sequence was dropped from the library. This provided
a mechanism for rarely observed sequences to be forgotten. The deterministic
nature of the simulated system did not need to make use of this (hence the
large initial strength), but it is a feature of S-learning that suits it for use with
more complex systems as well. It can also be seen that after several repeated



observations a sequence’s existence in the library would be assured for the life of
the system. This is analogous to recording an experience in long-term memory.

Action selection The Agent referred to the Sequence Library to help determine
which action command to send at each timestep. All sequences that began with
the most recent state were used as a set of predictions. (The most recent state
might be contained in multiple σ’s, since several actions may have resulted in
that state in the system’s history. Sequences beginning with all σ’s matching the
most recent state were returned.) Each sequence represented a possible future.
The Agent compared the reward at the final state of each sequence to the reward
at the initial state, and the sequences with the greatest increase in reward were
selected as the most promising.

The actions pertaining to each sequence defined a plan. By executing the
actions in the same order, it was possible to create the same sequence of states.
However it was not guaranteed to do so. Some state information, such as distance
to the grid borders when not in contact with them, was not directly sensed and so
introduced some variability into the effects produced by a given series of actions.
Although it was a relatively minor effect with the simulated robot, with more
complex systems containing more limited state information, the variability of the
effects of a given action would increase greatly. The most promising sequences
found in the Sequence Library represented the best case scenarios for each plan.
In order to make a more informed decision, the expected value of the final reward
for each plan (up to 50 of them) was calculated in the following way.

The library was queried for all the sequences starting from the most recent
state and executing each plan. The final rewards for the sequences executing a
given plan were averaged, weighted by the log of the strength of each sequence:

r =

∑

i ri log (ωi + 1)
∑

i log (ωi + 1)
(9)

where r is the weighted average reward and ri is the reward and ωi is the
strength associated with each sequence. One was added to ωi to ensure that the
log remained non-negative.

r represented the expected value of the reward a given plan would produce.
The plan with the highest value of r was selected for execution, given that r was
greater than the reward at the most recent state. In the case of the simulated
robot, with a maximum sequence length of two, the plan always consisted of a
single action; that action command was passed to the robot at that timestep.

If no plans were expected to increase the reward, then the robot generated a
random exploratory plan. Exploratory plans were also initiated at random inter-
vals (on average one out of sixty timesteps). In addition, a ‘boredom’ condition
was met if the same state was observed more than five times within the last fifty
timesteps. This also resulted in the creation of an exploratory plan. Exploratory
plans were of random length, up to 4 actions long. Each action was randomly
generated with each of the 4 elements of the action vector having an indepen-
dent, 25% chance of being active. Exploration provided some random variation



to S-learning’s operation, allowing it to explore its environment and avoid get-
ting caught in highly non-optimal behavior patterns, such as infinitely-repeating
cycles.

Task structure The robot was able to increase its reward by orienting itself
toward the light source and approaching it. When the robot drove forward into
the light source, both light sensors registered their maximum intensity, and gen-
erated the maximum reward. This was defined to be the completion of the task.
After the task was completed, the robot and the light source were both ran-
domly repositioned in the grid and the task began again. The measure of the
performance in each run was the number of timesteps required to complete the
task.

3 Results

On the first run the robot did not approach the light source in any direct way.
The beginning of the run is shown in Figure 3. Initially, the Sequence Library
was empty and all movements were random and exploratory. Learning gained
during the first movements was used as soon as it was applicable. Notably, the
somewhat direct descent from the upper-right region of the grid to the lower-
middle region was the repeated application of single successful movement.

O

X

Fig. 3. The initial movements of a typical näıve simulation run.

The earliest runs consisted mostly of exploration and were relatively lengthy.
The first twenty runs averaged over 350 timesteps per run. As the Sequence



Library became more complete and the state space was better explored the
number of timesteps required to reach the goal decreased rapidly. (Figure 4)
At 200 runs, the average number of timesteps had decreased to 50. From that
point, performance continued to improve, but much more slowly. After 1400
runs, a typical run lasted 40 timesteps.
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Fig. 4. Goal acquisition performance. The average performance is shown for 20-run
blocks. Running on a 2.66 GHz Intel Xeon Processor with 8 GB of RAM under a
64-bit Linux, these data were generated in 16 minutes.

Later runs show a much more direct approach to the goal. Figure 5a shows
an optimally direct run. Figure 5b and c show nearly direct runs that have been
interrupted by exploratory movements. Occasionally the robot wandered for a
time before closing in on the goal, particularly when it began far from the goal,
with its sensors facing away from it. This, together with exploratory interludes,
caused the average performance to stay as high as it did, rather than drop to
optimal levels—closer to 20.

4 Discussion

This work has demonstrated the implementation and operation of S-learning,
a model-free learning and control approach that is fundamentally case-based.
S-learning was able to learn to control a simple robot in a simple environment.

S-learning is capable of addressing some dynamic reinforcement learning
problems, although it should be noted that the light-seeking robot simulated
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Fig. 5. Three typical simulation runs after 1400 runs.

here is not one. The addition of multiple light sources of different colors, and
time varying rewards associated with different colors would be an example of a
dynamic RL problem. For examples of S-learning solving dynamic RL problems,
see [2, 8].

The two degree-of-freedom, non-holonomic mobile robot simulated here could
be modeled with a trivial amount of effort. In fact, this model existed in the
simulation in order to generate the appropriate behavior. However, S-learning
didn’t make use of that model (except for the structured sensory information
that the simulation produced), but treated the robot system as a black box.
The key aspect of S-learning’s operation is that it relied only on the system’s
prior experience, rather than on a priori knowledge. This simulation does not
showcase the extent of S-learning’s capability. Rather, it’s purpose was to detail
an instantiation of the S-Learning algorithm.

4.1 Limitations of S-learning

The robustness and model-independence of S-learning comes at a price. The
largest cost is in long learning times. Significant training time, approximately
75,000 timesteps, was required to learn to control a relatively simple system. This
raises the question of when it would be appropriate to use S-learning. In any im-
plementation where a model is available, the trade-off between which portions
to learn and control with S-learning and which to control with a more conven-
tional model-based controller is a trade-off between learning time (short-term
performance) and robustness (long-term performance). This question can only
be answered based on the specific goals and constraints of each implementation.



Some of the details of S-learning’s implementation are specific to the sys-
tem. One of these details is the maximum sequence length, nmax

σ . As described
previously, nmax

σ = 2 was known to be appropriate to the simulation due to its
determinism and simplicity. However, other systems may benefit from larger val-
ues of nmax

σ . Humans’ capability to remember 7±2 chunks of information suggest
that nmax

σ = 7 is an estimate with reasonable biological motivation. Similarly
the dynamics of sequence strength, underlying consolidation and forgetting of
sequences, may need to be varied to achieve good performance on different sys-
tems. Initial tests show that the most critical design decisions in an S-learning
implementation are the discretization of sensor data and the assignment of re-
ward vectors that produce desirable behaviors. Some primary considerations
when discretizing sensors are discussed in [8, 9], but additional work is required
to fully identify the trade-offs involved.

4.2 Implications

Due to its model agnosticism, S-learning’s case-based reasoning approach to
robot control is potentially applicable to hard problems, such as bipedal lo-
comotion and manipulation. In the case of locomotion, the system model can
be extremely, if not intractably, complex, and environments may be completely
novel. In addition, extra-laboratory environments can be harsh, and insensitiv-
ity to sensor and actuator calibration may be desirable as well. In the case of
manipulation, mathematical modeling of physical contact is notoriously difficult
and requires a lot of computation to perform well. It also requires high-fidelity
physical modeling of the entire system, which is not possible when handling un-
familiar objects. These attributes suggest that locomotion and manipulation are
two examples of hard problems to which S-learning may provide solutions.
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